The Bridge Rectifier
When four diodes are connected as shown in figure 4-8, the circuit is called a BRIDGE RECTIFIER. The input to the circuit is applied to the diagonally opposite corners of the network, and the output is taken from the remaining two corners.
One complete cycle of operation will be discussed to help you understand how this circuit works. We have discussed transformers in previous modules in the NEETS series and will not go into their characteristics at this time. Let us assume the transformer is working properly and there is a positive potential at point A and a negative potential at point B. The positive potential at point A will forward bias D3 and reverse bias D4. The negative potential at point B will forward bias D1 and reverse bias D2. At this time D3 and D1 are forward biased and will allow current flow to pass through them; D4 and D2 are reverse biased and will block current flow. The path for current flow is from point B through D1, up through RL, through D3, through the secondary of the transformer back to point B. This path is indicated by the solid arrows. Waveforms (1) and (2) can be observed across D1 and D3.
When four diodes are connected as shown in figure 4-8, the circuit is called a BRIDGE RECTIFIER. The input to the circuit is applied to the diagonally opposite corners of the network, and the output is taken from the remaining two corners.
One complete cycle of operation will be discussed to help you understand how this circuit works. We have discussed transformers in previous modules in the NEETS series and will not go into their characteristics at this time. Let us assume the transformer is working properly and there is a positive potential at point A and a negative potential at point B. The positive potential at point A will forward bias D3 and reverse bias D4. The negative potential at point B will forward bias D1 and reverse bias D2. At this time D3 and D1 are forward biased and will allow current flow to pass through them; D4 and D2 are reverse biased and will block current flow. The path for current flow is from point B through D1, up through RL, through D3, through the secondary of the transformer back to point B. This path is indicated by the solid arrows. Waveforms (1) and (2) can be observed across D1 and D3.
No comments:
Post a Comment